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Abstract
We investigate the effect of the electric field and the temperature on the electrical conductivity
of one-dimensional disordered systems due to phonon assisted hopping of small polarons. The
microscopic transport mechanism is treated within the framework of the generalized molecular
crystal model and the Kubo formula, while percolation theoretical arguments lead to analytical
expressions for the macroscopic behavior of the electrical conductivity at high (multi-phonon
assisted hopping) and low (few-phonon assisted hopping) temperatures under the influence of
moderate electric fields. The theoretical results are successfully applied to recent experimental
findings for a wide temperature range and from low up to moderate electric fields. Comparison
is made with other theories.

1. Introduction

Observations during the past three decades have shown strong
nonlinearities on the conductivity of one-dimensional (1D)
disordered systems, such as amorphous semiconductors [1, 2],
amorphous carbon [3], doped polymers [4–6], conjugated
polymers [7, 8]. The discovery of the polymeric field
effect transistors and light emitting diodes [9, 10] caused
an intense research activity devoted to the field dependence
of the conductivity in disordered organic materials and
conjugated polymers. Carbon nanotubes, nanowires and
conductive molecules [11–16], DNA being one of the most
representative specimens, have been placed among the most
promising materials for nanotechnology [17–19, 11, 20, 21].
Understanding of the carrier transport properties in these
materials is important for innovating applications and the
refinement of many others.

The absence of long range order in the presence of an
electron or a hole in a deformable disordered environment
leads to the localization of the carrier and results in the
transport of the charge carriers via hopping mechanism. If
the interaction energy between the carrier and the phonons is
strong compared with the bandwidth, a ‘small polaron’ may

1 Author to whom any correspondence should be addressed.

form. Interaction with phonons will normally determine the
hopping rate between one localized state to another. The
polaronic character of the carriers, the presence of disorder
and the effect of the application of a finite electric field along
with temperature variations have to be taken into account in
a systematic theoretical investigation of the electrical behavior
of these systems. The interplay of ‘external stimuli’ such as the
electric field and the temperature is still an open question.

For 3D systems the effect of the electric field on the
variable range hopping DC conductivity has been studied in
the past by various workers. In the early seventies Apsley
and Hughes [22, 23] introduced a method to evaluate the field
dependence of the DC conductivity for the case of single-
phonon assisted hopping motion in a disordered system. In
the late eighties Triberis [24–26], based on the Apsley and
Hughes approach, examined the effect of the electric field
on the conductivity of the high (and low) temperature multi-
phonon (few-phonon) assisted small polaron hopping regime,
considering the deformation of the surroundings, induced by
the carriers i.e. small polaron formation, as a basic ingredient
of the theory.

For 1D disordered systems, in the variable range hopping
regime at low temperatures, Fogler and Kelly [27] investigated
theoretically the effect of a finite electric field on the
resistivity. As they pointed out ‘. . . remarkably, the ultimate
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low-T limit where variable range hopping dominates, has
long remained untouched by theorists except for one early
numerical study [28]. In their analysis [27], they took into
account the existence of highly resistive segments (‘breaks’)
on the conducting path of the carriers in 1D systems and found
that the role of the breaks diminishes and eventually becomes
insignificant as the electric field increases.

More recently, Ma et al [29] presented a model to describe
hopping transport and the DC conductivity of 1D systems
with off-diagonal disorder. Considering the temperature
dependence of the DC hopping conductivity, they showed that
it increases with the increase of temperature taking much larger
values than in the case of the Anderson model with pure
diagonal disorder. They also studied the field dependence of
the conductivity to find that at low electric fields the hopping
conductivity conforms with the ohmic law, but at strong fields
it presents non-ohmic characteristics.

A number of experimental reports concern electrical
transport properties of 1D disordered systems [30–35]. In
these studies several mechanisms have been proposed for the
interpretation of the experimental measurements. Multistep
hopping [36, 37], carrier excitations across single particle
gaps [33], variable range hopping [38] or small polaron
transport [13, 14, 39, 40] are among the mechanisms
suggested. In some cases phenomenological expressions for
the temperature and the field dependence of the electrical
conductivity have been employed, such as the activated
Arrhenius law or expressions coming from the study of 3D [41]
or mesoscopic systems [42], and fitting parameters of obscure
physical origin are involved. This is due to the lack of
a systematic study of the transport mechanism leading to
analytical expressions for these dependencies.

Cumings et al [30] measured the electrical resistance
R between the ends of a multiwall carbon nanotube during
telescopic extension of the nanotube. In order to provide
additional support for the carriers’ localization in the 1D
system they measured the electric field dependence of the
system’s resistance. They found that at low applied voltages
the resistance is approximately constant with some fluctuations
due to experimental noise, while at high applied voltages it
decreases precipitously with increasing voltage, leading to a
nonlinear conductance.

Aleshin et al [31] studied the charge transport in
polydiacetylene quasi-1D single crystals (PDA-PTS) as a
function of the temperature, for a wide temperature range, 25
up to 300 K, and moderate electric fields up to 105 Vm−1.
Their measurements showed that as the electric field increases,
the deviations from the ohmic behavior become apparent and
the temperature dependence of the current becomes weaker.
Different transport mechanisms and corresponding expressions
for the electrical conductivity, based on rather different
microscopical approaches were used for the interpretation of
the experimental findings, such as strongly thermally activated
hopping or variable range hopping conduction. At T > 50 K,
they reported thermally activated nearest-neighbor hopping by
small polarons as a possible transport mechanism.

Tang et al [32] reported the electric transport properties
of mono-sized carbon nanotubes fabricated in the channels

of AIPO4-5 zeolite crystals. Polarized Raman spectra
measurement showed the 1D behavior of the carbon nanotubes.
Varying temperature within the range of 25 up to 160 K
they observed a conductance monotonically decreasing with
decreasing temperature. The hopping mechanism was
phenomenologically described as a combination of thermal
activation and tunneling. Different fits of the temperature
dependence of the conductance measured at zero bias voltage
and at low temperatures, of the form ln σ1D ∼ T −1/(d+1) with
d = 1, 2 and 3, showed that their measured results were in
good-agreement with the ln σ1D ∼ T −1/2 behavior, implying
1D hopping of electrons in their carbon nanotubes.

Recently, Triberis et al [43, 44], based on the generalized
molecular crystal model (GMCM), introduced by Triberis
and Friedman [45], and theoretical percolation arguments,
investigated small polaron hopping transport in 1D disordered
systems at high temperatures (h), ignoring the effect of
correlations. An analytical expression for the temperature
dependence of the electrical conductivity, ln σ h ∼ T −2/3,
was obtained. This result reproduced satisfactorily the
experimental data reported for λ-DNA and for poly(dA)-
poly(dT) DNA [33, 34], considering DNA as a one-
dimensional disordered molecular wire in which small
polarons are the charge carriers. ln σ h-versus-T −2/3 plots
permitted the evaluation of the maximum hopping distance.

Most recently Triberis and Dimakogianni [46] showed that
the inclusion of correlations (cr) leads to a ln σ h,cr ∼ T −1/2

law, a result which is consistent with the corresponding 3D
case.

An analytical expression predicting the electric field and
temperature dependence of the DC conductivity taking into
account the 1D character of the system, the presence of
disorder and the polaronic character of the carriers remains to
be theoretically established. It is the purpose of the present
work to contribute in this direction for the high (multi-phonon
assisted) and the low (few-phonon assisted) temperature small
polaron hopping regime when low and moderate electric fields
are applied and correlations are ignored.

The present paper attempts to extend the percolation
theory of hopping conduction of small polarons beyond the
limit of linear response (i.e. the ‘ohmic regime’) which
manifests itself applying low electric fields. The main attention
is paid to the regime of moderate fields. We use this term
to describe the region of transport where the logarithm of the
conductivity can be expanded in powers of the field F , and well
approximated by the lowest non-zero power. It will turn out
that the natural expansion parameter is eα−1 F/2kBT , hence in
moderate fields one requires eα−1 F/2kBT < 1, where α−1 is
the spatial extend of the localized small polaron wavefunction
and e the electronic charge.

The model used is based on the picture of dissipative
motion of charged classical particles in a one-dimensional
lattice potential comprised of ‘molecular lattice sites’ along
which small polarons are transported, in the presence of
disorder, under the influence of an electric field. In a low
or moderate electric field, the electron–lattice site interaction
leads to the localization of the particles on the lattice sites.
Their transport mechanism has hopping-like character assisted
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by the phonons and the electric field. Applying large electric
fields the motion of the particle becomes unbounded [47]
i.e. the application of large electric fields could result in the
dissociation of small polarons.

Strong electric fields could also favor hops mainly
oriented in the direction opposite to the electric field, making
vanishingly small the probability of hops in the direction of
the field. This imposes the use of the concept of the directed
percolation [48, 49].

Implications of this sort, any effects of the electric field on
the electronic wavefunctions or any processes such as Poole–
Frenkel, are not considered in the present work.

The theoretical results are applied to the full set of
experimental data of Aleshin et al [31] and comparison is made
with other theories.

2. The model

The model we use for the study of the small polaron
hopping motion in a disordered system is the generalized
molecular crystal model (GMCM), introduced by Triberis and
Friedman [45]. It is based on a generalized ‘hopping model’
Hamiltonian of the form

〈m|H |n〉 = 〈m|H0 + V |n〉
= Ei,{nk}δi jδ{nk},{nk′ } + 〈m|V |n〉, (1)

where |n〉 = |i, {nk}〉, are the eigenstates of H , and H0

is the zeroth-order (i.e. the electronic transfer integral J =
0) Hamiltonian used by Holstein [50] with corresponding
eigenvalues,

Ei,{nk} = εi (0) − Eb(i) +
∑

k

h̄ωk(nk + 1/2). (2)

Here, {nk} represents the totality of vibrational quantum
numbers (. . . , nk, . . .) for the occupation of the site with
position vector ri ,

Eb(i) =
(

1

N

) ∑

k

A2
i

2Mω2
k

, (3)

is the small polaron binding energy, and εi (0) is the local
electronic energy. N is the number of lattice sites and Ai is
the electron–lattice interaction parameter.

Equations (2) and (3) show the essential extends of the
MCM which are:

(1) a site-dependent local electronic energy, εi (0),
(2) a site-dependent interaction parameter, Ai , and concomi-

tant binding energy, Eb(i) = N−1
∑
k

(A2
i /2Mω2

k).

The treatment refers to the non-adiabatic limit, i.e. in the
physical situation where the electron is no longer able to follow
rapid fluctuations of the lattice and, hence, it does not respond
quickly enough to the occurrence of a coincident event in order
to overcome the energy barrier. In this case, J can be treated
as a small perturbation in the lowest order [51, 52].

3. Field dependence of the conductivity for the high
temperature small polaron hopping regime

When a carrier hops from a site i of energy Ei to a site j of
energy E j , at distance Ri j , the average equilibrium transition
probability at high (h) temperatures (h̄ω0 � kBT [45, 53]),
W 0h

i j , is given by [45]

W 0h
i j = γ h

0 exp(−2αRi j ) exp[−(|Ei | + |E j | + 2ε2)/2kBT ].
(4)

Here, ε2 = (Ei + E j)/4 and γ h
0 = (J 2/h̄)(π/4ε2kBT )1/2.

The energy of the carrier is taken mainly polaronic [45].
Using equation (4) and defining for convenience the

reduced variables R′
i j = 2αRi j , E ′

i = Ei/k ′
BT , E ′

j =
E j/k ′

BT , where k ′
B = 4kB/3, the average equilibrium

transition probability can be written as

W 0h
i j = γ h

0 exp[−(R′
i j + E ′

i + E ′
j )]. (5)

Following [22, 24], as the hopping probability, W 0h
i j ,

depends on R′
i j , E ′

i and E ′
j it is logical to combine R′

i j
with E ′

i and E ′
j into a single parameter. It is this single

parameter, the ‘range’ �0h between two sites which determines
the probability of hopping between them. The states between
which the small polaron hops may be regarded as points
in a three-dimensional random array (one spatial coordinate
and two energy coordinates, cf equation (5)), where the
‘distance’ between two states is given by the range �0h. The
shorter this ‘distance’ is the greater the hopping probability.
Conduction is the result of many series of hops through this
three-dimensional array, and as short range hops are favored,
it is the average nearest-neighbor ‘distance’ between states
in this three-dimensional space which determines the overall
conductivity.

Thus,
W 0h

i j = γ h
0 exp(−�0h), (6)

where
�0h = R′

i j + E ′
i + E ′

j . (7)

In the presence of an electric field, F , the average
transition probability, W h

i j (F), assuming that the occupation
probabilities do not change in the presence of the electric field,
will be given by

W h
i j (F) = W 0h

i j exp(−eF Ri j cos θ/kBT ), (8)

or

W h
i j (F) = γ h

0 exp(−[R′
i j(1 + λ cos θ) + E ′

i + E ′
j ]), (9)

where
λ = eF/2αkBT . (10)

For the 1D case θ takes the values 0 or π .
Thus, we may write

W h
i j(F) = γ h

0 exp(−�h
i j), (11)

where
�h

i j = R′
i j(1 + λ cos θ) + E ′

i + E ′
j . (12)
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Then, the conductivity σ h(F) varies as exp(−�̄h
nn) or

ln σ h(F) = const − �̄h
nn, (13)

where, �̄h
nn is the average nearest-neighbor range. The problem

is therefore to calculate this quantity.
Firstly, we have to obtain Nh(�h), the total number of

states within a range �h
i j . For our case we can write the range

�h
i j as

�h = R′(1 + λ cos θ) + 2E ′ − �′, (14)

where E ′
i = E ′

j − �′
i j , �′

i j is the disorder energy between the
two sites i and j , and the indices from E ′

j ,�
′
i j and R′

i j have
been dropped.

In reduced coordinates

Nh(�h) =
∑

θ=0,π

{
Ch

1

∫ �h

0

[ ∫ �∗

�′

( ∫ Rh∗

0
dRh′

)
dE ′

]
d�′

}
,

(15)
where Ch

1 = (k ′
BT )2 N2

0 /2αNS, �h∗ = (�h + �′)/2 and
Rh∗ = [�h − (2E ′ − �′)]/(1 + λ cos ϑ).

Here, NS is the concentration of sites, and N0 is the
density of states (D.O.S) assumed to be constant, i.e. N(E j ) =
N(Ei ) = N0. We have also taken EF = 0.

Integrating we obtain

Nh(�h) = Ch
2 (�h)3, (16)

where Ch
2 = Ch

1/6(1 − λ2).
Defining

�N(�) = ∂ N(�)

∂� , (17)

the number of states with ranges between � and � + d� is
�N(�) d�. Then the probability that a state with range � is
the nearest neighbor in the three-dimensional space is given by

Pnn(�) = S(�N(�)/S)[1 − N(�)/S]S−1. (18)

Here, S is the total number of states in the system which is
clearly very large. Thus, we may write

Pnn(�) = �N(�) exp(−N(�)), (19)

as the nearest-neighbor distribution.
Having evaluated Nh(�h) we obtain

�Nh(�h) = Ch
3 (�h)2, (20)

where Ch
3 = 3Ch

2 . Then the nearest-neighbor distribution
becomes

Pnn(�h) = 3Ch
2 (�h)2 exp[−Ch

2 (�h)3]. (21)

The average nearest-neighbor range �̄nn is given by

�̄nn =
∫ ∞

0 �Pnn(�) d�
∫ ∞

0 Pnn(�) d� . (22)

Substituting Ph
nn(�h) from (21) into (22) and integrating, we

obtain

�̄h
nn = �( 4

3 )

(Ch
2 )

1/3
, (23)

where �(n) is the gamma function. Thus,

�̄h
nn =

(
T h

0

T

)2/3(
1 − F2

g(T )

)1/3

, (24)

where

g(T ) =
(

2αkBT

e

)2

, (25)

and

T h
0 = 2.18α1/2 N1/2

S

kB N0
. (26)

Consequently, the conductivity, σ h(F, T ), varies as,

σ h(F, T ) ∝ exp

[
−

(
T h

0

T

)2/3(
1 − F2

g(T )

)1/3]
, (27)

or

ln σ h(F, T ) ∝ −
(

T h
0

T

)2/3(
1 − F2

g(T )

)1/3

. (28)

When F2/g(T ) � 1, i.e. eα−1 F � 2kBT , the expression
for the conductivity can be written as

ln σ h(F, T ) ∝ ln σ h(0, T ) + h(F)/ f h(T ), (29)

where

ln σ h(0, T ) = −
(

T h
0

T

)2/3

, (30)

f h(T ) =
[

1

3

(
T h

0

T

)2/3 1

g(T )

]−1

, (31)

and
h(F) = F2. (32)

We notice that for F = 0 we regain the exp[−(T h
0 /T )2/3]-

behavior for the conductivity, σ h(0, T ), which was predicted
by Triberis et al [43] using a different percolation approach,
while T h

0 has the same dependence on the parameters involved
as the corresponding quantity, T h

0 , used there.

4. Field dependence of the conductivity for the low
temperature small polaron hopping regime

At low temperatures (l), the average equilibrium transition
probability, W 0l

i j , reads [54]

W 0l
i j = γ l

0 exp(−2αRi j ) exp[−(|Ei |+|E j |+|Ei −E j |)/2kBT ].
(33)

Here, γ l
0 = (ω0/π)[π J exp(−2ε2/h̄ω0)/h̄ω0]2[(4ε2/h̄

ω0)
�i j /h̄ω0/(�i j/h̄ω0)!].
In the presence of an electric field, F , and taking Ei > E j ,

the average transition probability, W l
i j(F) is given by

W l
i j(F) = γ l

0 exp(−�l), (34)

where
�l = R′

i j(1 + λ cos θ) + E∗
i , (35)

where E∗
i = Ei/kBT . Here, �l is the ‘distance’ between

two states in a two-dimensional random array (one spatial
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coordinate and one energy coordinate) (cf equation (35)) where
the small polaron may be regarded to hop.

In order to evaluate the average nearest-neighbor range
�̄l

nn that determines σ l(F, T ), we have to obtain N l(�l). Using
the following equation where the indices from E∗

i , R′
i j have

been dropped. In reduced coordinates,

N l(�l) =
∑

θ=0,π

{
C l

1

[ ∫ �l

0

( ∫ Rl∗

0
dRl′

)
dE∗

]}
, (36)

where C l
1 = kBT N0/2α and Rl∗ = (�l − E∗)/(1 + λ cos ϑ),

we obtain
N l(�l) = C l

2(�l)2, (37)

where C l
2 = C l

1/(1 − λ2).
From equation (27)

�N l(�l) = C l
3�l, (38)

where C l
3 = 2C l

2 and the average nearest-neighbor distribution
becomes

P l
nn(�l) = 2C l

2�l exp[−C l
2(�l)2]. (39)

Substituting P l
nn(�l) into equation (22) we obtain

�̄l
nn = �( 3

2 )

(C l
2)

1/2
. (40)

Thus,

�̄l
nn =

(
T l

0

T

)1/2(
1 − F2

g(T )

)1/2

, (41)

where

g(T ) =
(

2αkBT

e

)2

, (42)

and

T l
0 = 1.57α

kB N0
. (43)

The conductivity, σ l(F, T ), varies now as,

σ l(F, T ) ∝ exp

[
−

(
T l

0

T

)1/2(
1 − F2

g(T )

)1/2]
. (44)

Thus,

ln σ l(F, T ) ∝ −
(

T l
0

T

)1/2(
1 − F2

g(T )

)1/2

. (45)

When F2/g(T ) � 1, i.e. eα−1 F � 2kBT , the expression
for the conductivity can be written as

ln σ l(F, T ) ∝ ln σ l(0, T ) + h(F)/ f l(T ), (46)

where

ln σ l(0, T ) = −
(

T l
0

T

)1/2

, (47)

and

f l(T ) =
[

1

2

(
T l

0

T

)1/2 1

g(T )

]−1

, (48)

and
h(F) = F2. (49)

For F = 0 we regain the exp[−(T l
0/T )1/2]-behavior

for the conductivity, σ l(0, T ), which has been predicted by
Triberis et al [43].

5. Results and discussion

As we pointed out in section 1 several transport mechanisms
and corresponding expressions for the temperature and
electrical field dependence of the electrical conductivity have
been proposed for the interpretation of the experimental
findings. Aleshin et al [31] measured the electrical resistivity
as a function of temperature, for a wide temperature range
(25–300 K), and moderate electric fields up to 105 V m−1,
in polydiacetylene quasi-1D single crystals (PDA-PTS).
Polydiacetylene is a unique, essentially one-dimensional, fully
conjugated polymer. They reported that at T > 50 K nearest-
neighbor hopping of small polarons is probable, consequently,
these data are appropriate for the application of our theoretical
results.

Before proceeding to the analysis of Aleshin et al data
we have to discuss certain issues concerning our theoretical
approach.

Since the early days of small polaron theory Emin [55]
pointed out that: ‘While the site-to-site small polaron jump rate
provides sufficient information to determine the carrier’s (trap-
free) d.c. mobility in a crystal, in a disordered material a major
statistical problem (at least, in principle) remains. Namely
there are an overwhelmingly large number of inequivalent
paths via which the carrier can move through the sample . . ..
To determine the d.c. conductivity in such a situation is one
of the tasks of the so-called percolation theory’. This was
for Triberis and Friedman [45] and Triberis [45, 54, 56] the
motivation and the challenge for a number of publications
in the past on small polaron hopping transport i.e. to start
from the microscopic expression for the jump rates of a small
polaron hopping between two successive sites, and applying
percolation theoretical considerations similar to those used in
the case of variable range hopping, to obtain the macroscopic
conductivity of the material as a function of the temperature
and the electric field in 3D disordered systems.

In the present investigation we follow the same direction
applying a different percolation approach [24].

The ohmic behavior of the system is characterized by
the free-field temperature-dependent conductivity σ(0, T ).
According to Triberis and Friedman [45] a T −ε/(ε+r) law
governs the T -dependence of the small polaron hopping
conductivity. Here, ε is the energy’s dimensions (number),
involved in the percolation condition, which is different at
‘high’ and ‘low’ temperatures, and r is the spatial dimensions
involved. This law has been successfully applied to interpret
the temperature dependence of the conductivity of a variety
of amorphous materials. A brief review is presented in [26].
For the high-T and 3D case (ε = 2 and r = 3) a T −2/5

law was obtained [45]. For the low temperature 3D case
(ε = 1 and r = 3), the T −1/4 law (Mott’s law) was obtained
[54, 57], which is also a widely accepted behavior. For the case
of longitudinal conduction, at low-T , in thin films (2D case),
(ε = 1 and r = 2) a T −1/3 law was obtained [58]. For the 1D
case (the DNA case) at high temperatures (ε = 2 and r = 1) a
T −2/3 law was obtained [43], while at low temperatures and 1D
(ε = 1 and r = 1), Triberis et al [46] obtained, consistently,
a T −1/2 law. The results presented in the present work, for
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F = 0, are consistent with the T −ε/(ε+r) law, although the
percolation treatment we use here is different.

In our analysis the charge carriers involved in the transport
are small polarons and these carriers are responsible for the
observed conductivity either at high or at low temperatures.

Due to the fact that small polaron hopping at low
temperatures is due to few-phonon assisted hopping, instead
of many-phonon assisted hopping (which is relevant at high
temperatures), the intrinsic transition rate, for small polarons,
at low-T and the corresponding percolation condition are
similar to those which characterize variable range hopping of
‘bare’ (not small polarons) electrons localized in a disordered
environment [59, 60]. Consequently, the qualitative behavior
of the conductivity due to small polaron hopping at low
temperatures is similar to the one of localized ‘bare’ electrons
hopping via variable range hopping in a disordered material.
Certain parameters involved in the analytical expressions in
both cases, which are refereed to either small polarons or bare
localized electrons, do not affect the qualitative behavior of the
conductivity.

The study of the effect of the electric field along with the
temperature variation, for the 3D case, for the high temperature
regime reads [24], ln σ h(F, T ) ∝ −T −2/5(1 − F2/g(T ))2/5,
and for the low temperature case [25], ln σ l(F, T ) ∝
−T −1/4(1 − F2/g(T ))1/2.

The present work, for the 1D case, predicts: for the
high temperature regime, (equation (28)), ln σ h(F, T ) ∝
−T −2/3(1 − F2/g(T ))1/3, and for the low temperature case,
(equation (45)), ln σ l(F, T ) ∝ −T −1/2(1 − F2/g(T ))1/2.

It is clear that dimensionality affects the behavior of the
electrical conductivity.

Moreover, in our treatment we have taken the density of
states N(Ei ) = N(E j ) = N0 to be constant [45, 61–63] over
the energy range Em , which is a frequently used assumption.

The effect of the form of the DOS on the DC conductivity
of the small polaron hopping regime, in disordered systems,
has been analytically investigated, by one of the authors [64]
considering various energy-dependent DOS models: N(E) =
N0 En , N(E) = N0 + λE(λ > 0), for the low-T and high-
T regime. In the present work we consider a constant DOS
because the inclusion of the energy dependence of the DOS
would give very complicated dependencies and shadow the
interplay of the temperature and the electric field, which is the
scope of the present work. Furthermore, comparison can be
made with the F = 0 results [43] where the same form of the
DOS has been used.

Another point that needs further clarification is the choice
of the ‘high’ or the ‘low’ temperature region, where the
corresponding equations (27), (29) and (44), (46) apply.

According to the mathematical analysis of the generalized
molecular crystal model it is the condition h̄ω0 � kBT [53]
that determines the ‘high’ or the corresponding ‘low’
temperature regime [53, 65]. This mathematical analysis leads
to the evaluation of the intrinsic transition rate, which differs at
high temperatures (multi-phonon assisted hopping), compared
with that at low temperatures (few-phonon assisted hopping),
and consequently, results to different percolation conditions.
Thus, it is the condition h̄ω0 � kBT which distinguishes the

Figure 1. � ln ρh-versus-T−2/3 for the high temperature regime
(T = 120, 160, 240, 300 K) and different electric field values:
F = 0.4 × 105, 1.3 × 105, 3.3 × 105 and 6 × 105 V m−1. The inset
presents the ln ρ(0, T )-versus-T−2/3 high temperature ohmic
behavior.

‘high’ from the ‘low’ temperature regime. In both temperature
regimes small polarons hop across the 1D medium via hops of
variable ranges. Which temperature in real systems is indeed
‘high’ or ‘low’ depends on the system under study. This has
been manifested (at high temperatures) by Triberis et al [43],
for the case of DNA.

Proceeding to the analysis of Aleshin et al [31], we
observe that their experimental data reported for temperatures
in the range of 50 up to 300 K and electric field values up
to 105 V m−1, show a distinctively different behavior. For
temperatures in the range of 50 up to 90 K we observe much
stronger variations of the resistivity in terms of F/T compared
with those in the temperature range of 120 up to 300 K, for
the same electric field values. This observation allows us to
consider the first region as the ‘low’ temperature region while
the second as the ‘high’ temperature region.

For these temperature regions we apply, equation (29)
and (46), respectively, for a representative value of the extend
of the small polaron wavefunction, i.e. α−1 = 2 Å [38, 66].
The condition eα−1 F � 2kBT , holds for all the field and
temperature values considered. In fact it holds for much higher
electric field values.

In figure 1 we show the deviation of the electrical
conductivity from the ohmic behavior i.e. � ln ρh =
ln ρh(F, T ) − ln ρh(0, T ) as a function of T −2/3, for different
electric field values, for the high-T regime. The ρ(0, T )

experimental values have been obtained extrapolating, at F =
0 V m−1, the experimental data presented in [31] as ρ-versus-
F/T . Specifically, we show the � ln ρh-versus-T −2/3 for T =
120, 160, 240, 300 K and F = 0.4 × 105 V m−1 (full squares),
F = 1.3 × 105 V m−1 (full circles), F = 3.3 × 105 V m−1

(full triangles) and F = 6 × 105 V m−1 (overturned full
triangles). In the inset we show the ln ρh(0, T )-versus-T −2/3

ohmic behavior. T h
0 is approximately equal to 296 K.

In figure 2 we show the deviation of the electrical
conductivity from the ohmic behavior i.e. � ln ρ l =
ln ρl(F, T ) − ln ρl(0, T ) as a function of T −1/2, for different
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Figure 2. � ln ρ l-versus-T−1/2 for the low temperature regime
(T = 50, 60, 90 K) and different electric field values: F = 0.6 × 105,
1.6 × 105, 2.5 × 105 and 3.5 × 105 V m−1. The inset presents the
ln ρ(0, T )-versus-T−1/2 low temperature ohmic behavior.

electric field values, for the low-T regime. Specifically, we
show the � ln ρl-versus-T −1/2 for T = 50, 60, 90 K and
F = 0.6 × 105 V m−1 (full squares), F = 1.6 × 105 V m−1

(full circles), F = 2.5 × 105 V m−1 (full triangles) and
F = 3.5 × 105 V m−1 (overturned full triangles). In the inset
we show the ln ρ l(0, T )-versus-T −1/2 ohmic behavior. T l

0 is
approximately equal to 1814 K, which is comparable with the
corresponding value reported by Aleshin et al [31] for the case
of variable range hopping.

The fit of the experimental data, for F = 0, supports the
idea of small polaron transport according to the T −2/3 law,
at high temperatures, and according to the T −1/2 law, at low
temperatures.

We notice that for very low electric fields the hopping
conductivity conforms with the ohmic law. Increasing
the electric field the conductivity presents non-ohmic
characteristics due to the contribution of the electric field to the
thermally assisted hopping conductivity. The transition from
the ohmic to the non-ohmic behavior starts at smaller values of
the electric field at lower temperatures. We also notice that the
slope of the curves, which describes the rate of the increase of
the conductivity, is greater at lower temperatures.

In figure 3 we show the interplay of the electric field and
the temperature plotting � ln ρh = ln ρh(F, T )−ln ρh(0, T ) as
a function of F2/T 2, for the high-T regime i.e. for T = 300 K
(full rhombus), T = 240 K (full triangles), T = 160 K (full
circles) and T = 120 K (full squares).

In figure 4 we show the interplay of the electric field and
the temperature plotting � ln ρ l = ln ρl(F, T )− ln ρl(0, T ) as
a function of F2/T 2, for the low-T regime i.e. for T = 90 K
(full triangles), T = 60 K (full circles) and T = 50 K (full
squares).

Figures 3 and 4 show the competitive role of the electric
field and the temperature in the behavior of the electrical
conductivity. The increase of the electric field weakens
the effect of the temperature driving the system from the

Figure 3. � ln ρh-versus-F2/T 2 for the high temperature regime
(T = 120, 160, 240, 300 K).

Figure 4. � ln ρ l-versus-F2/T 2 for the low temperature regime
(T = 50, 60, 90 K).

thermally activated hopping to an electric field induced
hopping conductivity.

Our theoretical results are also consistent with previous
theoretical reports. It is well established [67–69] that in 1D
systems there are rare fluctuations in the random distribution of
localized states that create unavoidable highly resistive breaks
on the hopping network. Raikh and Ruzin [69], investigated
the fluctuations on the hopping conductance of 1D systems.
They reported that breaks that are shaped as diamonds and
have a temperature dependent size, have resistances that far
exceed that of typical links. These breaks at very low
electric fields have a dominant contribution to resistivity which
exhibits an ohmic behavior. Fogler et al [27] theoretically
investigated the effect of a finite electric field on the resistivity
of a disordered one-dimensional system in the variable range
hopping regime and shed more light to the role of these
breaks. According to them as F increases the large resistors are
progressively eliminated leading to the non-ohmic behavior of
the resistivity. Moreover, according to Raikh and Ruzin [69],
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the size of the diamond-shaped breaks is inversely proportional
to temperature. Thus, for the same applied field, the higher
the temperature, the smaller the breaks, and consequently the
greater the conductivity, especially for the range of F values
where the breaks have a dominant contribution to conductivity,
i.e. for very low fields.

Recently, Ma et al [29] reported on the field dependence of
the DC conductivity of 1D systems with off-diagonal disorder.
As they pointed out, at very low electric fields, the field has
almost no effect on the conductivity, while increasing the
electric field a non-ohmic behavior is observed.

In the present investigation we focused upon moderate
electric fields. Increasing further the electric field’s intensity it
is expected that the field assisted hopping will prevail upon the
thermally assisted character of transport and conductivity will
become totally field dependent. Additionally, in the present
work we did not take into account correlation effects due to the
energy of a common site (site j ) between two successive hops,
from i to j and from j to k. The inclusion of correlations could
affect the behavior of the conductivity. These will be presented
in the near future.

6. Summary

In summary, we developed a theoretical model for the
temperature dependence of the electrical conductivity under
the influence of moderate electric fields, when small polarons
are transported in a disordered 1D environment, at high and
low temperatures.

The analytical expressions for the electrical conductivity,
obtained as a function of the electric field and the temperature,
are applied on experimental findings concerning charge
transport in polydiacetylene quasi-1D single crystals. It is
concluded that small polaron hopping could be the responsible
transport mechanism for the observed electrical conductivity.
It is shown that the electric field and the temperature act
competitively upon the behavior of the electrical conductivity.
At very low electric fields the hopping conductivity conforms
with the ohmic law while increasing the electric field the
conductivity presents non-ohmic characteristics. The transition
from the ohmic to the non-ohmic behavior starts at smaller
values of the electric field at lower temperatures. The
rate of the increase of the conductivity is greater at lower
temperatures.

Our conclusions are also in accordance with theoretical
results which are referred to variable range hopping.
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